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Least-Squares  Refinement of Molecular Structures from Gaseous 
Electron-Diffraction Sector-Microphotometer  Intensity Data. I. Method* 
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An adaptation of the method of least squares to the refinement of molecular structures, based on 
gaseous electron-diffraction sector-microphotometer intensity data, is presented. The method has 
the advantages of permitting simultaneous refinement of many more parameters than can be handled 
by trial-and-error methods and of opening the possibility of obtaining realistic standard errors and 
error correlations in place of the more subjective 'error limits'. Although the problem of weighting 
of the observations is not solved, it is felt that the method provides a more straightforward way 
to take account of factors known to introduce uncertainties than does the alternative approach 
based on radial distribution functions. 

A brief account of general experience with the method is given. 

I n t r o d u c t i o n  

For many years molecular structure refinement based 
on gaseous electron-diffraction data has been carried 
out largely by trial-and-error methods, for example 
by comparing theoretical intensity curves correspond- 
ing to various, slightly different combinations of 
structural parameters with the experimental inten- 
sity, or by fitting Gaussian curves to the peaks of 
the radial distribution obtained by Fourier trans- 
formation of the experimental intensity. Such methods 
are effective, though laborious, when the number of 
structural parameters is small and when the peaks 
of radial distribution curve are well resolved; how- 
ever, in more complicated cases little can be done 
other than to make plausible assumptions about the 
less important parameters and to refine the more 
important ones, reporting the results with error limits 
sufficiently large to include the effect of uncertainty 
in the assumptions. In recent years this problem has 
been made more acute by the rapid development of 
the experimental techniques of gaseous .electron 
diffraction: a well-executed experiment today yields 
a scattered electron distribution extending to approx- 
imately twice the scattering angle obtainable ten 
years ago and of more accurately known intensity. 
Analysis of such data by trial-and-error methods is 
even more laborious than before, part ly because one 
is interested in realizing the more accurate parameter 
values inherent in the richer data, but also because 
one wishes to press the possibility of determining 
values for the less important parameters. 

An obvious solution to the problem of refining 
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molecular structures determined from gaseous elec- 
tron-diffraction data is through the method of least 
squares, so successfully used in X-ray crystallography 
(Hughes, 1941). One possible approach, to which some 
attention has been given (e.g. Bonham & Bartell, 
1959) involves fitting theoretical peaks to the observed 
radial distribution curve. A second, and to us more 
appealing, approach is based on intensity distribu- 
tions. Based as it is on the individual observations 
of scattered intensity (or on directly related measure- 
ments of photographic density as is most common 
practice), this approach permits a more natural 
assignment of weights and more easily understood 
error estimates. I t  has been discussed briefly by 
Cruickshank & Viervoll (1949) and, particularly with 
respect to use of visual intensity data, in detail by 
Hamilton & Schomaker (1954). 

Some years ago one of us (K. H.) proposed a 
method for applying least squares to sector-micro- 
photometer electron-diffraction intensity data (Basti- 
ansen, Hedberg & Hedberg, 1956), and in that  
investigation (of 1,3,5,7-cyclo-octatetraene) fifteen 
parameters were refined. This gratifying success (the 
refinement of four parameters by the correlation 
technique is a practical limit) has encouraged us to 
develop the method, and after many applications it 
has now become a standard part of electron-diffrac- 
tion structure investigation in this laboratory. Its 
major advantages have proven to be the large number 
of parameters which may be handled, the statistically 
significant error estimates and error correlations 
which come naturally from the calculations, and the 
speed of refinement. 

I t  is the purpose of this article to describe the main 
features of the method and to summarize some of our 
general experience with its application. The article 
following describes an adaptation of the method to 
an automatic computer. In the third article of the 
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series the method is illustrated in application to a 
typical problem, the refinement of cyclopropane. 

Matrix formulation of least squares 

I t  is convenient to begin by summarizing the prin- 
ciples of least-squares curve-fitting in matrix form 
(see e.g. Arley & Buch~ 1950). We suppose 

f = f ( x l ,  x2 . . . .  , xm)  (1) 

is a non-linear function of m parameters xq by which 
we seek to represent 2V (N>m) experimental 
points. If approximate values x 0 are known for the 
m parameters, we have, neglecting higher order terms, 

f = f  (x °, x °, . . . ,  x °) +(  8f/ 8x~)oAx~ 

+ ( ~ f / ~ x 2 ) o A x 2 + . . .  +(~f /~x,~)oAzm (2) 

or, in matrix notation 

F ~ = F ° ~ + A ~ X ~ .  (3) 

Equations (3) are the conditional equations. F~ and 
F~  s differ by V~, so that  use of the observed values 
of the function gives, after dropping subscripts, 

Fobs+ V = F 0 + AX (4) 

V = F ° -  F°bS+ AX (5) 

= - N + A X .  (6) 

Introducing the diagonal weight matrix P~N = P and 
applying the least-squares criterion V'PV-+minimum 
(V' is the transpose of V) we have 

(8/8X) (V'PV)= A'PV = 0 .  (7) 

Combination of (6) and (7) gives the normal equations 

B X = Y  (8) 
where 

B = A ' P A  (9) 
and 

Y - - A ' P N .  (10) 
The solutions are 

X =  B-1Y (11) 

and the standard errors a(xq) are 

a(xq) -- [(B~ 1) (V'PV)/(N-m)]½ (12) 

= [ ( B ~ I ) ( N ' P N - X ~ Y ) / ( N - m ) ]  ½. (13) 

Application to intensity data 

The problem of refinement by least squares based on 
intensity data is the problem of fitting a theoretical 
curve, which is a function of the molecular parameters, 

to an experimental curve derived from the measured 
intensity distribution. The particular type of ex- 
perimental curve to be fitted depends upon the method 
of data reduction practised, and might well be 
different from case to case, although usually not. 
Our refinement method currently makes use of the 
following well-known intensity expression, which 
corresponds to a Gaussian probability distribution of 
distance displacements during molecular vibration: 

kit(s)  = k ~ Anr ' ;  1 exp (-½1~s 2) sin srn . (14) 
Tt 

The parameters whose best values are sought are k, 
part or all of the r's, and part or all of the l's; the 
amplitudes An, which may be constant or vary with s, 
are assumed known. The parameter k is an amplitude 
scale factor (the iobs and I calc are usually on different, 
arbitrary scales) and is of no structural interest. 
As a consequence of molecular symmetry, about 
which a good deal is often known, it is usual to regard 
only part of the r's as independent. In principle 
connections among the l's in the exponential vibration 
factors exist also, but it is convenient in practice to 
regard them as all independent. Refinement of some 
r's or l's corresponding to very weakly contributing 
distances may be unsuccessful or converge to un- 
reasonable values: in such event their values may be 
assumed and the refinement carried out on the 
remaining parameters. 

The trial structure and the N matr ix  

The process of refinement begins with selection of 
a suitable trial structure, which is usually obtained 
by analysis of the radial distribution curve calculated 
by Fourier inversion of the experimental intensity 
curve. Since this procedure is adequately described or 
referenced in almost any account of a gaseous electron- 
diffraction investigation, it need not be discussed here. 
The N matrix, a column matrix of N elements, 
may be obtained from the observed intensity curve 
and the theoretical curve calculated for the trial 

s t ruc tu re  from (14) by the formula 

N = I°bS(s) -- k I~C(s ) .  (15) 

Here I°bs(s) has been identified with F °bs and kI~alc(s) 

with F °. In our work the interval As= ~ A -1 is most 
often used in forming these differences, although 
larger intervals are also common.* A trial value of k 
is readily obtained by rough comparison of the 
scales of iobs and ioalc and, of course, is chosen so 
as to make N small. In further cycles of refinement N 
is calculated each time from the improved structure 
derived from the preceding cycle. 

* The value ¼ derives from our usual practice of taking 
data at that interval from the continuous microphotometer 
traces of the photographic plates. 
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The  matrix of derivatives A 
The rectangular matrix A = ( A ~ )  has elements 

of the type (~IcI~IC(s)/~k), (~kI~alc(s)/~l), and 
(~kI~alC(s)/~r). The first of these is obvious from (14), 
and since the l's are regarded as independent, the 
second is given by -lclns~In(s), where In(s) is a single 
term of (14) associated with l~. The derivatives with 
respect to distance parameters are somewhat more 
difficult to calculate because cognizance must be 
taken of changes in the d dependent distances (d~) 
as a function of the i distances chosen as parameters 
(r~). In terms of these two types of distances the total 
intensity defined by (14) may be written 

Results and recycling 
The use of the three matrices described above is 

indicated by equations (8) to (13). The quantities X, 
of course, are the corrections to the distance, mean 
amplitude, and scale factor parameters, and the refined 
structure is obtained by adding them to the starting 
values. From this result a new F 0 may be obtained 
and a new cycle begun. When recycling, particularly 
in later stages when the changes are small, it is often 
possible to use the J and B (hence B -1) matrices 
from the proceeding refinement cycle. We have found 
however, that  it is usually best to recalculate A 
each time. 

kI,(s) = k[~Y, I i ( r t )÷ .~, I~(d~)] (16) 
i d 

and the derivatives expressed by 

~ ] ~ / ~ a l c / ~ r ~  ~ calc . calc ---- [~Ii /~r~+2:(~Sd /~da)(~d~/~r~)] (17) 
d 

where, of course, 

calc SI n / ~rn 

=Anr~ 1 exp (-½1~s 2) (s cos s r n - r n  1 sin srn) . (18) 

Thus, in order to form the column vectors of the 
A matrix corresponding to the parameters ri one 
must first calculate the quantities (~d~/~r,)= ( J~ i )=J  
and then use (17). The direct calculation of J,  which 
requires keeping all but one distance parameter 
constant, is often laborious. We have found it more 
convenient to describe the structure in terms of bond 
angles and bond distances, which constitute a more 
natural set of parameters, and to calculate J from 
variation in these by transformations to the set of 
distance parameters. Details of this calculation are 
found in the Appendix. 

The weight matrix P 
In theory the weight matrix should reflect the effect 

of correlation, which surely exists, among the data. 
Because the problem of correlation is a complicated 
one, which needs thorough study, we have so far 
chosen to regard the measurements as independent, 
and to employ a diagonal" weight matrix P = {P~N}; 
a rough estimate of the effect of correlation is made 
following the refinement. Weight functions of unity 
(except for ranges of zero corresponding to small or 
large scattering angles), and ones calculated according 
to 

P = const x s exp ( - bs ~) (19) 

where b is an arbitrary constant, have been most 
common. Equation (19) has no special virtue, other 
than that of fitting our general experience concerning 
quality of the data. 

The error matrix M 
The standard errors are given by (12) or (13), 

but the most complete statement of the refinement 
results includes as well the correlations among errors. 
This is expressed in the off-diagonal elements of B-1 
by the equations 

@qpC~(Xq)a(xv)=B~l(V'PV)/(hT--m) (20) 

= B ~ I S  2. (21) 

Since the parameters actually adjusted are not 
necessarily the most natural set, it is of interest to 
compute from (12) or (13) and (20) or (21) the errors 
and correlations to be associated with such a set. 
The desired result is the error matrix M- 

M = {#qv} = S 2CB-1C'. (22) 

Here C is the matrix of coefficients transforming the 
parameters adjusted to the set of interest. 

Some general  experience 

We have found the method generally easy to use, 
and very much faster than conventional refinement 
methods. However, it must be applied with care, 
and convergence is not always obtained. Such dif- 
ficulties may be anticipated, of course, by the appear- 
ance of the radial distribution function from which 
the trial structure is taken. Indeed, some useful 
information is contained in non-convergence, which 
tends to indicate which parameters are marginally 
determinable - -  a circumstance otherwise often 
difficult to ascertain. The following paragraphs 
summarize some experience, much of which is drawn 
from work carried out in this laboratory by Prof. 
Otto Bastiansen. 

In simple cases, characterized by well resolved 
peaks in the radial distribution curve, the method 
converges nicely even from a relatively poor trial 
structure (distance and mean amplitude parameters 
in error by several hundredths of 1 /~). The results 
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for the more important distances and associated mean 
amplitudes are usually within 0.001 _~ of the values 
obtained by a careful analysis of the radial distributior~ 
curve. The main advantage of the least-squares 
method is speed, and the error information obtained. 

In complicated cases, where the radial distribution 
curve is poorly resolved, good trial structures are 
usually needed. Convergence is sometimes obtained 
from a poor trial structure, but many cycles of 
refinement may be needed. More often, some of the 
parameters diverge and one faces the choice of looking 
for a better trial structure, of applying some sort of 
reduced-shift correction or of simplifying the problem 
by fixing some of the less important parameters. 
Even so, in such cases the more important parameters 
usually refine satisfactorily. 

Results for the mean amplitudes of important 
distances are often quite different for refinements 
based on different ranges of the intensity curve: 
in general their values are found to be smaller using 
inner data. The reason is unclear, but one is reminded 
that  systematic uncertainties in factors used in data 
reduction (for example, the form factors and exposure 
correction) are greatest in the inner region. If a similar 
effect for distance parameters is present, it is much 
less marked. 

The standard errors obtained from a successful 
refinement are surprisingly small (i.e. 0.001-0.002 /~ 
for bond distances) for the more important parameters. 
Since our weight matrices have not taken account 
of correlations among the data, these errors connected 
to parameter values are unrealistic. Nevertheless, 
their small magnitudes are an indication of high 
internal consistency among the data, and one is 
tempted to hope that  once the major sources of 
correlation such as wave length of electrons, apparatus 
constants, etc. are understood and properly handled, 
such magnitudes will not be unreasonable. 

The magnitudes of the errors corresponding to a 
distance parameter and to the mean-amplitude 
parameter associated with that  distance are usually 
very similar. This is in contrast to the magnitudes 
of the errors corresponding to different distances or 
mean amplitudes, which may differ widely. 

As would be expected, errors associated with well- 
resolved peaks in the radial distribution curve are 
relatively little correlated with others, while with 
poorly resolved or unresolved peaks they are highly 

correlated. 

constants (wave length, camera distance, and sector 
function), in the photographic process (density- 
exposure relationship), and in the process of drawing 
in the experimental background. 

Our description of the method has been based upon 
the simple equation (14), which is unsatisfactory 
when the probability distribution of displacements is 
not Gaussian. The least-squares refinement of para- 
meters strongly affected by internal rotation or by 
out-of-plane vibrations, as well as investigation of 
second-order effects such as the anharmonicity of 
normal vibrations therefore requires a more general 
intensity function iu place of (14). Further, one might 
anticipate the wish to adjust the phase factors 
cos A ~ .  I t  is possible to incorporate all such modifica- 
tions. 

A P P E N D I X  

I t  is desired to calculate the elements of a matrix 

J =  {J~,} = {~d~/~ri} (23) 

which expresses the dependence of one type of distance 
('dependent') on another type ('independent') used 
as parameters, starting from a model defined in terms 
of bond angles and bond distances. We define the 
following matrices : 

x = = . . . .  , . . . ,  ( 2 4 )  

Y -- {y~l} = {ro+l, rb+2 . . . . .  r,, d~, d2, . . . ,  da} (25) 

-- {}~} = {r~, r e , . . . ,  rb, r~+~, rb+2,..., r~} (26) 

= { ~ }  = {dx, d 2 , . . . ,  da, ax, a2, . . . ,  a~}. (27) 

X may be identified with the original set of a bond- 
angle and b bond-distance parameters, Y with the 
set of distances dependent on X, { with a set of 
i distance parameters specifying the model, and r I 
with a set of d distance and a angle parameters 
dependent on ~. Clearly i = a + b and h = a + d. Adopt- 
ing the notation 

" ' "  

DU = ((Du)~i} = " ] (28) 

k~vl ~v2 ~v~ 

Possible improvement s  

A most important improvement could be made 
through the use of a non-diagonal weight matrix, 
in which proper account could be taken of correlations 
among the observations; such a weight matrix would 
lead to a more realistic assessment of errors. The 
nature of the correlations is not yet clear, but the 
sources are well known: uncertainties in experimental 

it is seen that  the desired J matrix comprises the first 
d rows of D~, which is readily calculated from D~ 
and D~: 

x D~--DxD~ (29) 

--D~(D~) -1. (30) 

The matrices D~ and D~x are easily written down; 
they have the form 
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/ D  d D d \  

D~ = 5 ....... E'" 
r = rl, re, . . . ,  ra (31) 

Di= ~b b,~ 
: . . . . . . . .  

i,i \ D ~ ' D  
\ a ,  b a~ a / 

r ~-- r l ,  ~ '2 ,  • • . ,  r b  
(32) 

r ' - -  rb+l, rb+2, • . .  r~ 

where E and  O are the  inden t i ty  and  nul l  matrices. 

We wish to thank  Prof. Otto Bas t iansen  and  Mr 
Fred  N. Fr i t sch  for helpful  discussion, and  for sig- 
n i f icant  contr ibut ion to the J ma t r ix  calculation. 
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A description is given of a computer program representing an adaptation of a least-squares method 
of molecular structure refinement based on gaseous electron-diffraction sector-mierophotometer 
data. 

I n t r o d u c t i o n  

The principles of a least-squares ref inement  method,  
based on gaseous electron-diffract ion sector-micro- 
photometer  data,  were described in  the preceding 
art icle (Itedberg & Iwasaki,  1964; hereafter  called 
H & I). In  a typica l  appl icat ion of the method  some 
200 observations and  10-15 parameters  m a y  be han- 
dled, and  the calculat ions involved are extensive 
enough to mer i t  use of an  automat ic  computer.  Be- 
cause the power of the method  should a t t rac t  increas- 
ing a t ten t ion  from workers in  gaseous electron dif- 
fraction, and  because the  computa t ional  problems 
posed are quite different  from those encountered in  
X-ray  diffraction,  a description of a computer  pro- 
g ram seems appropriate .  

In  the  account g iven here we seek to present  only 
the  ma in  features  of the  program and  in  a way  to 
make  clear the sequence of operations. The actual  
program, which will  be of l i t t le  interest  to others 
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since it  was wr i t ten  for a non-s tandard  ALWAC I I I -E ,  
differs in  un impor t an t  detai ls  from the flow diagrams.  
The complexi ty  of the program is in par t  d ic ta ted  b y  
the na ture  of the computa t ional  problem and  in par t  
by  the properties of the  ra ther  slow computer  super- 
posed on our objectives of making  the  ref inement  as 
au tomat ic  as possible and  as versat i le  as the  basic 
in tens i ty  equat ion H & I (14) permits.  Thus, i t  has  
been necessary to bui ld  in  special features such as 
optional  approximat ions  which allow savings of t ime,  
or checking calculations with optional recycling to 
protect a large inves tment  of t ime. Use of one of the 
widely avai lable  high-speed computers,  where a refine- 
ment  cycle for the typica l  problem ment ioned above 
would require seconds or minutes  ins tead of 1-1½ hours 
as i t  does with ALWAC I I I -E ,  would make  these 
features unnecessary and  lead to simplifications.  

Lis t  of  s y m b o l s  

For fur ther  explanat ion  of m a n y  of the following 
quant i t ies  see H & I. 

A Matr ix  of derivatives.  
A= A~m= {gkIT~'°(s)/~xdN.~ 

B B = A ' P A .  


